Switch to the dark mode that's kinder on your eyes at night time.

Switch to the light mode that's kinder on your eyes at day time.

Switch to the dark mode that's kinder on your eyes at night time.

Switch to the light mode that's kinder on your eyes at day time.

Wielding a laser beam deep inside the body

Please Share This!

Robotic engineers from Harvard’s Wyss Institute and John A. Paulson School for Engineering and Applied Science (SEAS) have developed a laser-steering microrobot that can be integrated with existing endoscopic tools, which are used in minimally invasive surgeries. Their approach was reported in Science Robotics.

The ends of endoscopic tools must be highly flexible to enable visualization and manipulation of the surgical site in the target tissue. In the case of energy-delivering endoscopic tools, which allow surgeons to cut or dry tissues and stop internal bleeds, a heat-generating energy source is added to the end of the device.

Currently available energy sources, delivered via a fiber or electrode, limit surgical precision and can cause unwanted burns in adjacent tissue sections and smoke development. While laser technology would be an attractive solution, the laser beam needs to be precisely steered, positioned and quickly repositioned at the distal end of an endoscope, which cannot be accomplished with the currently available relatively bulky technology.

Led by Wyss Associate Faculty Member Robert Wood, the Charles River Professor of Engineering and Applied Sciences, and postdoctoral fellow Peter York at Wyss Institute for Biologically Inspired Engineering and SEAS, the laser-steering microrobot, in its miniaturized 6 by 16 millimeter package, can operate with the necessary high speed and precision required for minimally invasive surgeries.

“To enable minimally invasive laser surgery inside the body, we devised a microrobotic approach that allows us to precisely direct a laser beam at small target sites in complex patterns within an anatomical area of interest,” said York, the first and corresponding author on the study and a postdoctoral fellow on Wood’s microrobotics team. “With its large range of articulation, minimal footprint, and fast and precise action, this laser-steering end-effector has great potential to enhance surgical capabilities simply by being added to existing endoscopic devices in a plug-and-play fashion.”

Source link The Harvard

Please Share This!

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to Top

Ad Blocker Detected!


Log In

Forgot password?

Forgot password?

Enter your account data and we will send you a link to reset your password.

Your password reset link appears to be invalid or expired.

Log in

Privacy Policy

To use social login you have to agree with the storage and handling of your data by this website. %privacy_policy%

Add to Collection

No Collections

Here you'll find all collections you've created before.