Switch to the dark mode that's kinder on your eyes at night time.

Switch to the light mode that's kinder on your eyes at day time.

Switch to the dark mode that's kinder on your eyes at night time.

Switch to the light mode that's kinder on your eyes at day time.

Novel food wrap offers shelf preservation

Please Share This!

As food costs continue to rise and a global food crisis looms on the horizon, it’s staggering to think that some 30-40 percent of America’s food supply ends up in landfills, mostly due to spoilage. At the same time, the World Health Organization estimates that foodborne illness from microbial contamination causes about 420,000 deaths per year worldwide.

What if there were a way to package fresh foods that could extend their shelf life and eliminate microbial contamination?

Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences and the Harvard T.H. Chan School of Public Health have developed a biodegradable, antimicrobial food packaging system that does both.

“One of the biggest challenges in the food supply is the distribution and viability of the food items themselves,” said Kit Parker, the Tarr Family Professor of Bioengineering and Applied Physics at SEAS and senior author of the paper. “We are harnessing advances in materials science and materials processing to increase both the longevity and freshness of the food items and doing so in a sustainable model.”

The research was published in Nature Food.

From the battlefield to the farm

Surprisingly, the new food packing system has its roots in battlefield medicine. For more than a decade, Parker and his Disease Biophysics Group have been developing antimicrobial fibers for wound dressings. Their fiber manufacturing platform, known as Rotary Jet-Spinning (RJS), was designed specifically for the purpose.

RJS works likes a cotton candy machine — a liquid polymer solution is loaded into a reservoir and pushed out through a tiny opening by centrifugal force as the device spins. As the solution leaves the reservoir, the solvent evaporates, and the polymers solidify to form fibers, with controlled diameters ranging from microscale to nanoscale.

Source link The Harvard


Please Share This!

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to Top
Close

Ad Blocker Detected!

Refresh

Log In

Forgot password?

Forgot password?

Enter your account data and we will send you a link to reset your password.

Your password reset link appears to be invalid or expired.

Log in

Privacy Policy

To use social login you have to agree with the storage and handling of your data by this website. %privacy_policy%

Add to Collection

No Collections

Here you'll find all collections you've created before.